Lecture Notes: 4-9 Antiderivatives
MOTIVATING IDEAS:

1. If $s(t)$ give the position of an object at each time t, then $s^{\prime}(t)$ is \qquad velocity and $s^{\prime \prime}(t)$ is acceleration \qquad .
2. If $P(t)$ is the number of individuals in a population at each time t, then $P^{\prime}(t)$ is population grouth. rate

- The point : Until now, we start w/ position and find velocity. What if we know the velocity of an object, can we determine position?
- More abstractly, can we "undo" differentiation?

Definition: Given a function $f(x)$, any function F such that $F^{\prime}(x)=f(x)$
is called an antiderivative of $f(x)$.

EXAMPLE: Find three different antiderivatives of $f(x)=x^{2}$.

$$
F(x)=\frac{1}{3} x^{3}, F(x)=\frac{1}{3} x^{3}+1, F(x)=\frac{1}{3} x^{3}-21.37
$$

QUESTION 1: How to any two antiderivatives of $f(x)=x^{2}$ differ?
They have different constant terms.

QUESTION 2: How can you characterize all antiderivatives of $f(x)=x^{2}$ simultanously? Explain what your expression means.
$F(x)=\frac{1}{3} x^{3}+C$, where C could be any real number.

QUESTION 3: Fill in the blank:
Theorem: If F is an anti-derivative of f on an interval I, then the most general anti-derivative of f on I is

$$
F(x)+C .
$$

QUESTION 4: Do you really believe this Theorem? Here's a check. It's easy to see that $F(x)=x^{2}-\pi$ is an antiderivative of $f(x)=2 x$. (Right?) Apply the Theorem in Question 3 to this choice of F.
The theorem says the most general expression for antiderivatives of $f(x)$ is: $x^{2}-\pi+c$

QUESTION 5: Describe the family of antiderivatives of $f(x)=x^{2}$ geometrically.
The collection of all
anti derivatives of $f(x)=x^{2}$
consist of vertical
translations of the
graph $y=\frac{1}{3} x^{3}$.

Practice Problems:

picture

1. Minnie Mouse says that $F(x)=5 x^{2 / 3}+x+\sqrt{2}$ is an antiderivative of $f(x)=\frac{10+3}{3 \sqrt[3]{x}}$. Find the most efficient way to determine if she is correct.
Take the derivative + simplify.

$$
\begin{aligned}
& F^{\prime}(x)=\frac{10}{3} x^{-1 / 3}+1=\frac{10}{3 \sqrt[3]{x}}+1 \quad \text { Minnie Mouse is right. } \\
& =\frac{10}{3 \sqrt[3]{x}}+\frac{3 \sqrt[3]{x}}{3 \sqrt[3]{x}}=\frac{10+3 \sqrt[3]{x}}{3 \sqrt[3]{x}} .
\end{aligned}
$$

2. Fill in the table below. Assume n and a are fixed constants.

Function	Particular Anti-derivative	Function	Particular Anti-derivative
$x^{n}(n \neq-1)$	$x^{n+1} / n+1$	$\frac{1}{\sqrt{1-x^{2}}}$	$\arcsin x$
$\cos x$	$\sin x$	$\frac{1}{1+x^{2}}$	$\arctan X$
$\sin x$	$\cos x$	$\frac{1}{x}$	$\ln \|x\|$
$\sec ^{2} x$	$\tan x$	e^{x}	\mathbf{e}^{X}
$\csc ^{2} x$	$\cot X$	a^{x}	$\mathbf{a}^{X} / \ln \boldsymbol{a}$
$\sec x \tan x$	$\sec x$	$\csc x \cot x$	$\csc X$

3. Assuming $F(x)$ is an antiderivative of $f(x)$ and $G(x)$ is an antiderivative of $g(x)$, fill in the blanks below.
(a) For any constant \boldsymbol{a} the general antiderivative of $\boldsymbol{a} f(x)$ is $\boldsymbol{a} F(x)+C$
(b) The general antiderivative of $f(x)+g(x)$ is $F(\mathbf{x})+G(x)+C$.
4. Find the most general antiderivative of each function below and then check your answer.
(a) $f(x)=x^{20}+4 x^{10}+8$
(b) $f(t)=\frac{5 \sec t \tan t}{3}-4 \sin t-\frac{1}{t^{2}}+e^{2}$

$$
F(x)=\frac{1}{21} x^{21}+\frac{4}{11} x^{11}+8 x+c
$$

$$
F(t)=\frac{5}{3} \sec t+4 \cos t+t^{-1}+e^{2} t+C
$$

check

$$
F^{\prime}=x^{20}+4 x^{10}+8
$$

check:

$$
F^{\prime}(t)=\frac{5}{3} \sec t \tan t-4 \sin t-1 \cdot t^{-2}+e^{2}
$$

(c) $g(x)=x\left(2 x^{5}+\sqrt{x}\right)+\sqrt{2} x$

$$
\begin{aligned}
& g(x)=2 x^{6}+x^{3 / 2}+\sqrt{2} x \\
& G(x)=\frac{2}{7} x^{7}+\frac{2}{5} x^{5 / 2}+\frac{\sqrt{2}}{2} x^{2}+c
\end{aligned}
$$

(d) $f(t)=\frac{3 x^{7}-\sqrt{x}}{x^{2}}=3 x^{5}-x^{-3 / 2}$

$$
\begin{aligned}
F(t) & =\frac{3}{6} x^{6}-(-2) x^{-1 / 2}+c \\
& =\frac{1}{2} x^{6}+2 x^{-1 / 2}+c
\end{aligned}
$$

(e) $g(x)=8\left(\frac{e^{x}}{5}-\frac{5}{x^{2}+1}\right)$

$$
G(x)=8\left(\frac{1}{5} e^{x}-5 \arctan x\right)+C
$$

5. Given $f^{\prime}(x)=x \sqrt{x}$ and $f(1)=2$, find $f(x)$. Note: The directions are different here. You are not asked to find a family of antiderivatives but a particular antiderivative.

$$
\begin{array}{ll}
f^{\prime}(x)=x^{3 / 2} & \text { Answer } \\
f(x)=\frac{2}{5} x^{5 / 2}+c & f(x)=\frac{2}{5} x^{5 / 2}+\frac{8}{5} \\
2=f(1)=\frac{2}{5}(1)^{5 / 2}+C &
\end{array}
$$

So $C=2-\frac{2}{5}=\frac{8}{5}$
6. Explain geometrically what piece of information you are given in the previous problem that allows you to identify a particular member of the family of antiderivatives.
We are given a point on the graph of $f(x)$. So, among all the vertical translations, we can pick out a single one.
7. Find (the particular function) $f(x)$ assuming:

- $f^{\prime \prime}(x)=\sqrt[3]{x}=x^{1 / 3}$
- $f^{\prime}(8)=1$ and $f(1)=-6$.

So $f^{\prime}(x)=\frac{3}{4} x^{4 / 3}+c$

$$
1=f^{\prime}(8)=\frac{3}{4}(8)^{4 / 3}+c
$$

$$
\begin{aligned}
& -6=f(1)=\frac{9}{28}-11+c \\
& \text { So } c=5-\frac{9}{28}=\frac{140-9}{28}=\frac{131}{28}
\end{aligned}
$$

So $C=1-12=-11$
So $f^{\prime}(x)=\frac{3}{4} x^{4 / 3}-11$.
ANS:

$$
f(x)=\frac{9}{28} x^{7 / 3}-11 x+\frac{131}{28}
$$

Now $f(x)=\frac{3}{4} \cdot \frac{3}{7} x^{7 / 3}-11 x+c$

$$
f(x)=\frac{9}{28} x^{7 / 3}-11 x+c
$$

8. A particle moves in a straight line and has acceleration given by $a(t)=5 \cos t-2 \sin t$. Its initial velocity is $v(0)=-6 \mathrm{~m} / \mathrm{s}$ and its initial position is $s(0)=2 \mathrm{~m}$. Find its position function $s(t)$.

$$
\begin{aligned}
v(t) & =5 \sin t+2 \cos t+c \\
-6=v(0) & =0+2+c \\
\text { so } c & =-8 .
\end{aligned}
$$

Now $v(t)=5 \sin t+2 \cos t-8$

$$
\begin{aligned}
& s(t)=-5 \cos t+2 \sin t-8 t+c \\
& 2=s(0)=-5+0+0+c \\
& c=7
\end{aligned}
$$

9. A ball is thrown upward with a speed of $48 \mathrm{ft} / \mathrm{s}$ from the edge of a cliff 432 feet above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground?
hint: acceleration due to gravity is $32 \mathrm{ft} / \mathrm{s}^{2}$. So $a(t)=-32 \mathrm{ft} / \mathrm{sec}^{2}$

$$
\left.\begin{array}{l}
v(0)=48 \mathrm{ft} / \mathrm{s} \\
s(0)=432 \mathrm{ft}
\end{array}\right\} \text { initial conditions }
$$

If $v^{\prime}(t)=a(t)=-32$, then $v(t)=-32 t+C$.
using, $48=-3 t(0)+c$. So $48=c$. So $v(t)=-32 t+48$
If $s^{\prime}(t)=v(t)=-32 t+48$, then $s(t)=-16 t^{2}+48 t+C$.
Using , $432=s(0)=-16 \cdot 0^{2}+48 \cdot 0+c$. So $432=C$. So $s(t)=-16 t^{2}+48 t+432$.
max height when? At t (time) when $V=0$.
So $0=-32 t+48$, or, $t=48 / 32=\frac{3}{2}$. Ans: The maximum height occurs after 1.5 seconds.
hit ground when? At t when $9=0$.

$$
0=-16 t^{2}+48 t+432=-16\left(t^{2}-3 t-27\right) \text {. or } t=6.9 \text { seconds }
$$

Antiderivatives

